Extensions 1→N→G→Q→1 with N=C22×C6 and Q=D7

Direct product G=N×Q with N=C22×C6 and Q=D7
dρLabelID
D7×C22×C6168D7xC2^2xC6336,225

Semidirect products G=N:Q with N=C22×C6 and Q=D7
extensionφ:Q→Aut NdρLabelID
(C22×C6)⋊1D7 = C6×C7⋊D4φ: D7/C7C2 ⊆ Aut C22×C6168(C2^2xC6):1D7336,183
(C22×C6)⋊2D7 = C2×C217D4φ: D7/C7C2 ⊆ Aut C22×C6168(C2^2xC6):2D7336,203
(C22×C6)⋊3D7 = C23×D21φ: D7/C7C2 ⊆ Aut C22×C6168(C2^2xC6):3D7336,227

Non-split extensions G=N.Q with N=C22×C6 and Q=D7
extensionφ:Q→Aut NdρLabelID
(C22×C6).1D7 = C3×C23.D7φ: D7/C7C2 ⊆ Aut C22×C6168(C2^2xC6).1D7336,73
(C22×C6).2D7 = C42.38D4φ: D7/C7C2 ⊆ Aut C22×C6168(C2^2xC6).2D7336,105
(C22×C6).3D7 = C22×Dic21φ: D7/C7C2 ⊆ Aut C22×C6336(C2^2xC6).3D7336,202
(C22×C6).4D7 = C2×C6×Dic7central extension (φ=1)336(C2^2xC6).4D7336,182

׿
×
𝔽